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Motivation for Project

v

Throughout the entire summer, our overall goal was to study
the embeddings of particular graphs on the torus

v

We split into two projects:

v

Project 1: Find Belyl pairs and create a database of them

v

Project 2: Investigate the monodromy groups of Belyi pairs



Spaces

The Riemann Sphere P!(C).
CU{oc}

The Torus

112




Toroidal Graphs

> Planar graphs are those that can be drawn on the plane
without edge crossings

» Toroidal graphs are those that can be drawn on the torus
without edge crossings.

» It turns out that there do exists non-planar graphs that can be
drawn on the Torus without crossings.



Example

Figure: K33

Figure: K33 embedded on a torus



Elliptic Curves

» Assuming each a; € C, consider a curve of the form
Y2 4+ a1 XY + a3Y = X3 4+ 2 X% + ay X + as.

» A linear change of variables allows us to get this curve in the
form
y?=x>+ Ax+ B.
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Elliptic Curves

» Assuming each a; € C, consider a curve of the form
Y2 4+ a1 XY + a3Y = X3 4+ 2 X% + ay X + as.

» A linear change of variables allows us to get this curve in the
form
y?=x>+ Ax+ B.
» This curve is said to be non-singular if

4A3 +27B% £ 0.

» A non-singular curve of this form can be shown to have
existing tangent lines at all points.



Elliptic Curves

Definition. An elliptic curve is a non-singular, cubic curve of the
form
yv2=x3+Ax+B

with a j-invariant
(E) = 6912A3
NI =y orB?

A
N




Elliptic Curves and the Torus

» Theorem: There exists a bijection between the points on an
elliptic curve and the set of points on a torus.

» This is a classic result and can be seen via elliptic logarithms.




Covering Spaces

Definition (covering space)

Let X be a topological space. A
covering space of X consists of a
topological space X and a map

p: X — X such that for each

x € X, there exists an open
neighborhood U of x such that
p~1(U) is the disjoint union of open
sets, each of which is mapped
homeomorphically onto U by p.




Notions of Degree

Definition. The degree d of a covering p : X — Y is the number
of points in X in the preimage of a point in Y, that is,
d = |p~1(y)|. It turns out that this is the same for all points.



Notions of Degree

Definition. The degree d of a covering p : X — Y is the number
of points in X in the preimage of a point in Y, that is,
d = |p~1(y)|. It turns out that this is the same for all points.

Definition. If p(x, y) is a rational function on an elliptic curve, that
is, a quotient of two relatively prime bivariate polynomials,
p(x,y) = A e say deg(p) = N if |p~L(w)| = N for all but

N qa(x,y)’
finitely many w.

» This means that if p: X — Y is both a covering map and a
rational map, where X = E(C) \ A (where A is finite), its
degree as a rational map and as a cover coincide.



Belyi Maps

Definition. Given a rational function f(x,y) with degree N, we say
that w is a critical value if |f ~1(w)| < N.
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Definition. Given a rational function f(x,y) with degree N, we say
that w is a critical value if |f ~1(w)| < N.

Definition. A rational function /3 : E(C) — PY(C) is called a
Belyl map if there are no critical values other than 0,1, and co.



Belyi Maps

Definition. Given a rational function f(x,y) with degree N, we say
that w is a critical value if |f ~1(w)| < N.

Definition. A rational function /3 : E(C) — PY(C) is called a
Belyl map if there are no critical values other than 0,1, and co.

Theorem. Given an elliptic curve E defined over the algebraic
numbers, there exists a Bely? map 3 : E(C) — P(C).
» A acts as a cover on P}(C) \ {0,1, 0}

» A Belyl map associated with its particular elliptic curve is
called a Belyl pair.



Example of a Belyl Pair

An example of a Belyl pair is

=X +1,

B(Xy}/) = _X3'
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An example of a Belyl pair is

V¥ =x+1 Blxy)=-x"

> 57(=1) = {(G, £v2), (5. £v2), (1, £V2) )
> (3 has degree 6.



Example of a Belyl Pair

An example of a Belyl pair is

Y=x+1, Blxy)=-x%

> 57(=1) = {(G, £v2), (5. £v2), (1, £V2) )
> (3 has degree 6.

> /6_1(0) = {(07 1)7 (0’ _1)}'



Example of a Belyl Pair

An example of a Belyl pair is

V¥ =x+1 Blxy)=-x"

> 57(=1) = {(G, £v2), (5. £v2), (1, £V2) )
> (3 has degree 6.
> /6_1(0) = {(07 1)7 (0’ _1)}'

» 371(1) = {(—¢3,0),(—¢3,0),(—1,0)} where (3 # 1 is a 3rd
root of unity.



Dessins d'Enfants

» A Dessin d'Enfant is a connected bipartite graph I embedded
in an oriented compact surface X, such that X \ T is a disjoint
union of 2-dimensional cells. Those cells are called faces. We
adopt the convention of representing the bipartite structure by
black and white colorings.

\

\

AN

» Dessins can also be seen as arising from Belyl maps




Dessins From Belyi Maps

Belyl maps give rise to Dessins d'Enfants
» Let 571(0) = Black Vertices
» Let 371(1) = White Vertices
» Let 571([0,1]) = Edges
» Let 371(c0) = Midpoints of Faces



Example 1

> B:FY(C) - PY(C),  B(x) =}
> 57(0) = {0}, B7H(1) = {1,G3, 3}, B2(00) = {oo}.

» The corresponding Dessin d’Enfant is



Example 2

» E:y?=x3+1 and ﬁ(x,y):)%l
> Its Dessin d'Enfant is given by




Degree Sequences of a Dessin

> Let I be a dessin. Its degree sequence D is defined to be the
multiset {B, W, F}, where B, W and F are sets of numbers,
defined as follows:
» B = {ey|b is a black vertex, and e, is the number of edges

adjacent to it}
» W = {e,|w is a white vertex, and e,, is the number of edges

adjacent to it}
» F = {ef|f is a face, and ef is the number of white vertices
adjacent to it}
» The degree sequence of the Belyl map is defined to be the
degree sequence of the associated dessin.

» The degree sequence can also be defined purely in terms of
the Bely’ map.



Example

» Consider the Bely pair, E : y? = x3+ 1 and B(x,y) = —x>.

» The corresponding dessin is

» We have that

> /8_1(0) = {(07 1)7 (Ov _1)}
> 571(12 = {(=¢G,0),(—¢2,0),(—1,0)} where (3 # 1 is a 3rd
root of unity.

> Its degree sequence is D = {{3,3},{2,2,2},{6}}.



Degree Sequences

» The degree sequence of a Belyi map always satisfies

Se= 3" ew=er =Bl + W+ |F| = deg(8)

beB weW feF
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» The degree sequence of a Belyi map always satisfies
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» Notethat Y- cpep =D e éw = 2 _rer € = deg(f3) is a
direct consequence of the degree sum formula or the

Fundamental Theorem of Algebra.



Degree Sequences

» The degree sequence of a Belyi map always satisfies

Se= 3" ew=er =Bl + W+ |F| = deg(8)

beB weW feF

» Notethat Y- cpep =D e éw = 2 _rer € = deg(f3) is a
direct consequence of the degree sum formula or the

Fundamental Theorem of Algebra.

> |B| + |W|+ |F| = deg(B) follows from the fact that Euler
characteristic of torus is 0:

2ge —2 = degﬂ(2gp1 —2) + Z (ep — 1)
PeE(C)



Degree Sequences

Question. For any given N € N, suppose we have sets
D= {B, W, F} satisfying

db=> w=> f=I[B[+|W|+|F|=N.
beB weW feF

When is D the degree sequence of a Belyi pair with Belyl map
having degree N7



Degree Sequences

Answer (Hurwitz, 1891). The precise conditions for when this
occurs are given as follows:

1. There exist 0g, 01,0+ € Sy with cycle types B, W, and F
respectively for which oggo o100, = 1.

2. The group G = (09,01,0) is a transitive subgroup of Sy.

Thus, for any N € N, to find Belyi maps of degree N, we use the
above theorem to find all possible degree sequences.



Example

Consider the degree sequence D = {{3}, {3}, {3}}. This
corresponds to some BelyT pair (E, 3) because, by choosing

oo = (123)
o1 = (123)
oo = (123)

we obtain 0 0 01 0 0o = 1. Moreover, G = (09, 01,0+) is the
cyclic group of order 3, which is a transitive subgroup of Ss.



Motivation for Monodromy Groups

Recall Hurwitz's Theorem:
Theorem (Hurwitz, 1891). Fix N € N. Given a degree sequence
D = {B, W, F} satisfying

db=> w=) f=|B+|W|+]|F|=N.

beB weWw feF
Then D is the degree sequence of some dessin on torus if and only
if there exist three elements 0g,01, and o4, in Sy, such that og has
cycle type B, o1 has cycle type W, and o, has cycle type F, and
they generate a transitive subgroup of Sy



Infinite Families of Regular Dessins

» A Dessin d'Enfant is regular if the degree for all black (or,
respectively, white) vertices are the same, and the degree for
all faces are the same.

» The degree sequence of a regular dessin on the torus is always
one of the following three types:

Dsasln) = (3.3} 2., 2 {6.....6})
D4,2,4(n) = {{47 o 74}7 {27 2n 72}? {47 o 74}}

Dsas(n) ={{3,....3,{3,....3},{3,...,3}}

n n



Infinite Families of Regular Dessins

D2,3,6(3): %@%

'D472’4(3) . 4H+F




Monodromy Group of a covering space

> Let p: X — Y be a covering map of degree d. Fixing a point
y € Y, we can define an action of 71(Y,y) on the set p~1(y)
as follows:



Monodromy Group of a covering space

> Let p: X — Y be a covering map of degree d. Fixing a point
y € Y, we can define an action of 71(Y,y) on the set p~1(y)
as follows:

> Let xq,x2,...xq be points above y and v € m1(Y,y) be a
loop. By the unique lifting property of covering space, there is
a unique path v; starts at each x; that lifts 7. Let x,(;) be the
end point of 7;. It must be a point above y. Then i — o(i) is
a permutation of the x/s. This gives an action of m1(Y,y) on
the points of the preimage of y.



Monodromy Group of a covering space

> Let p: X — Y be a covering map of degree d. Fixing a point
y € Y, we can define an action of 71(Y,y) on the set p~1(y)
as follows:

> Let xq,x2,...xq be points above y and v € m1(Y,y) be a
loop. By the unique lifting property of covering space, there is
a unique path v; starts at each x; that lifts 7. Let x,(;) be the
end point of 7;. It must be a point above y. Then i — o(i) is
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the points of the preimage of y.

» This action is called monodromy action. This action is
equivalent to a group homomorphism « : m1(Y,y) — Sq. The
image of « is called monodromy group.



Monodromy Group of a covering space

> Let p: X — Y be a covering map of degree d. Fixing a point
y € Y, we can define an action of 71(Y,y) on the set p~1(y)
as follows:

> Let xq,x2,...xq be points above y and v € m1(Y,y) be a
loop. By the unique lifting property of covering space, there is
a unique path v; starts at each x; that lifts 7. Let x,(;) be the
end point of 7;. It must be a point above y. Then i — o(i) is
a permutation of the x/s. This gives an action of m1(Y,y) on
the points of the preimage of y.

» This action is called monodromy action. This action is
equivalent to a group homomorphism « : m1(Y,y) — Sq. The
image of « is called monodromy group.

» im« is a transitive subgroup of Sy



Here, the torus is a acting as a covering space of P}(C)\ {0, 1, 0o}
under the covering map f3, with 5(x1) = B(x2) = B(x3) = y.

O g 8
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The monodromy group of this covering is Z3 C S3.



Monodromy groups and dessins

» Bely! maps are covering maps of P}(C) \ {0, 1,00}

» The fundamental group 71(P!(C) \ {0, 1, 00}) is generated by
00, a small loop goes around 0, and o1, a small loop that goes
around 1, with no other relations. Let o4, be the elements
satisfies 0go105 = 1.

» Let D= {B, W, F} be a degree sequence associated with
some dessin D on an elliptic curve E.

» Let a: 7 (PY(C)\ {0,1,00}) — S, be the monodromy map,
then a(0p),a(01) and a(os) will have cycle type B,W and F
respectively.



Computing Monodromy groups

» (o) is the product of cycles given
by listing the edges we meet in a
counterclockwise loop around the
black vertices

» Likewise, a(o1) comes from
counterclockwise loops around the
white vertices

» The degree sequence
D= {{3’ 3}a {27 2, 2}7 {6}}
» a(og) = (123)(645)
ao1) = (25)(14)(36)
a(0s) = (162435)




Theorem
The dessin in our infinite family with degree sequence D5 36(n) has
monodromy group G, = (Z, X Z,) % Zs

» Dr36(n) = {{3, S , 3112, .3.’7.,2}, {6,. .n.,6}}

O

L //

19 19



Theorem
The dessin in our infinite family with degree sequence D3 3 3(n) has
monodromy group G, = (Z, x Z,) X Z3

» D333(n) ={{3,.. 3} {3,...,31 {3,

// // //




Theorem
The dessin in our infinite family with degree sequence Da 2 4(n) has
monodromy group G, = (Z, X Z,) x Z4

» Daora(n) = {{4,. - 4}, {2, .2.’7.,2}, {4,. .n.,4}}




Proof in D 36)(n) case:

» For any n, we can algorithmically write down oq, 01, and 0.
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which are equivalent to / mod 6. For instance,
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Proof in D 36)(n) case:

» For any n, we can algorithmically write down oq, 01, and 0.

» Let ¢; be the cycle permuting the elements of {1,...,6n}
which are equivalent to / mod 6. For instance,
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Proof in D 36)(n) case:

» For any n, we can algorithmically write down oq, 01, and 0.

» Let ¢; be the cycle permuting the elements of {1,...,6n}
which are equivalent to / mod 6. For instance,
o =(28,.. 6n+2)

>ﬁfaoof01 0’0 , 1Bl =6

> 7 = 010004 10'0 1= CC3 1C5 Co, h/’ =n

> § =0y toy oo = acy teg tes, 0] = n.



Proof in D 36)(n) case:

» For any n, we can algorithmically write down oq, 01, and 0.

v

Let ¢; be the cycle permuting the elements of {1,...,6n}
which are equivalent to / mod 6. For instance,
o =(28,... 6n+2)

5:%0:01 Uo , 1B =6

- -1
> Y = 01000, O’O :C2C3 C5 C6, |’y]:n

v

> § =0y toy oo = acy teg tes, 0] = n.

v

v and § commute, thus (v,d) = (y) x (J).



Proof in D 36)(n) case:

» For any n, we can algorithmically write down oq, 01, and 0.

W
10 15, 18g 12
16/
d

Let ¢; be the cycle permuting the elements of {1,...,6n}
which are equivalent to / mod 6. For instance,
0 =(2,8,...,6n+2).

ﬁzaoozal_lao_l, |6l =6
1

v

v

-1 -1 -1 -1
> 7Y = 010001 0y~ = C2C3 "G5 " Cp, |’y]:n

> § =0y toy oo = acy teg tes, 0] = n.

v

v and § commute, thus (v,d) = (y) x (J).
(7,6) 2(B,7,0)

v



Proof in D 36)(n) case:

» For any n, we can algorithmically write down oq, 01, and 0.

W
10 15, 18g 12
16/
d

Let ¢; be the cycle permuting the elements of {1,...,6n}
which are equivalent to / mod 6. For instance,
0 =(2,8,...,6n+2).

ﬁzaoozal_lao_l, |6l =6
1

v

v

-1 -1 -1 -1
> 7Y = 010001 0y~ = C2C3 "G5 " Cp, |’y]:n

> § =0y toy oo = acy teg tes, 0] = n.

v

v and § commute, thus (v,d) = (y) x (J).

(7,8) < (B,7,9)
<’7767 ﬁ> = Gnv since 00,01 € <'Ya 67B>

v

v



Database of Belyi Pairs and Monodromy Groups

Having defined all the necessary terminology, the database of
BelyT pairs will consist of

» Natural numbers N € N.
> All Belyl pairs of degree N.

» For each BelyT pair, its corresponding Dessin d'Enfant, degree
sequence, and monodromy group.



Why should such a database exist?

Theorem (Zapponi, 2009). Fix N € N. Then there are finitely
many j-invariants such that there exists a BelyT pair (E, ) with
deg(B) < N.

Corollary. For a given N € N, there exists only finitely many

BelyT pairs (E, 3) with deg(3) = N, up to automorphism of the
elliptic curve.



Compiling the Database

» We begin with a positive integer N.
» We find all degree sequences for degree N.

» For each degree sequence, we set up a system of polynomial
equations to find Bely’ pairs which will have the corresponding
degree sequence.



Current State of Database

» We have all Belyi pairs up to degree 4, as well as the majority
of degree 5 BelyT pairs.

> There are no Belyi pairs of degree < 2.
> There is one Belyl pair of degree 3, two of degree 4, and 5
BelyT pairs of degree 5.

> We have all degree sequences and their monodromy groups up
to degree 8.



Dessins of With Degree Sequence {{4,1},{4,1},{5}}.

The dessin to the left has monodromy group Ss, the dessin to the
right has the holomorph of Zs as its monodromy group.



What's next?

v

Find all degree 6 Belyi pairs.

> We expect there to be no fewer than 30 BelyT pairs of degree
6.

Find an efficient method of obtaining Belyi pairs.

v

v

Compute monodromy groups from BelyT pairs
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Questions?



