Toroidal Belyĭ Pairs and Their Monodromy Groups

Ivan Gonzalez ${ }^{[1]}$ Dionel Jaime ${ }^{[2]}$ Caitlin Lienkaemper ${ }^{[3]}$ Gabriel Ngwe ${ }^{[4]}$ Baiming Qiao ${ }^{[5]}$

Florida International University ${ }^{1}$, University of Rochester ${ }^{2}$, Harvey Mudd
College ${ }^{3}$, Williams College ${ }^{4}$, Purdue University ${ }^{5}$, Purdue Research in Mathematics Experience 2016

July 31, 2016

Motivation for Project

- Throughout the entire summer, our overall goal was to study the embeddings of particular graphs on the torus
- We split into two projects:
- Project 1: Find Belyǐ pairs and create a database of them
- Project 2: Investigate the monodromy groups of Belyı̆ pairs

Spaces

The Riemann Sphere $\mathbb{P}^{1}(\mathbb{C})$.
$\mathbb{C} \cup\{\infty\}$

The Torus

Toroidal Graphs

- Planar graphs are those that can be drawn on the plane without edge crossings
- Toroidal graphs are those that can be drawn on the torus without edge crossings.
- It turns out that there do exists non-planar graphs that can be drawn on the Torus without crossings.

Example

Figure: $K_{3,3}$

Figure: $K_{3,3}$ embedded on a torus

Elliptic Curves

- Assuming each $a_{i} \in \mathbb{C}$, consider a curve of the form

$$
Y^{2}+a_{1} X Y+a_{3} Y=X^{3}+a_{2} X^{2}+a_{4} X+a_{6} .
$$

- A linear change of variables allows us to get this curve in the form

$$
y^{2}=x^{3}+A x+B
$$

Elliptic Curves

- Assuming each $a_{i} \in \mathbb{C}$, consider a curve of the form

$$
Y^{2}+a_{1} X Y+a_{3} Y=X^{3}+a_{2} X^{2}+a_{4} X+a_{6} .
$$

- A linear change of variables allows us to get this curve in the form

$$
y^{2}=x^{3}+A x+B
$$

- This curve is said to be non-singular if

$$
4 A^{3}+27 B^{2} \neq 0
$$

Elliptic Curves

- Assuming each $a_{i} \in \mathbb{C}$, consider a curve of the form

$$
Y^{2}+a_{1} X Y+a_{3} Y=X^{3}+a_{2} X^{2}+a_{4} X+a_{6} .
$$

- A linear change of variables allows us to get this curve in the form

$$
y^{2}=x^{3}+A x+B
$$

- This curve is said to be non-singular if

$$
4 A^{3}+27 B^{2} \neq 0
$$

- A non-singular curve of this form can be shown to have existing tangent lines at all points.

Elliptic Curves

Definition. An elliptic curve is a non-singular, cubic curve of the form

$$
y^{2}=x^{3}+A x+B
$$

with a j-invariant

$$
j(E)=\frac{6912 A^{3}}{4 A^{3}+27 B^{2}}
$$

Elliptic Curves and the Torus

- Theorem: There exists a bijection between the points on an elliptic curve and the set of points on a torus.
- This is a classic result and can be seen via elliptic logarithms.

Covering Spaces

Definition (covering space)
Let X be a topological space. A covering space of X consists of a topological space \tilde{X} and a map
$p: \tilde{X} \rightarrow X$ such that for each
$x \in X$, there exists an open neighborhood U of x such that $p^{-1}(U)$ is the disjoint union of open sets, each of which is mapped homeomorphically onto U by p.

Notions of Degree

Definition. The degree d of a covering $p: X \rightarrow Y$ is the number of points in X in the preimage of a point in Y, that is, $d=\left|p^{-1}(y)\right|$. It turns out that this is the same for all points.

Notions of Degree

Definition. The degree d of a covering $p: X \rightarrow Y$ is the number of points in X in the preimage of a point in Y, that is, $d=\left|p^{-1}(y)\right|$. It turns out that this is the same for all points.

Definition. If $p(x, y)$ is a rational function on an elliptic curve, that is, a quotient of two relatively prime bivariate polynomials, $p(x, y)=\frac{r(x, y)}{q(x, y)}$, we say $\operatorname{deg}(p)=N$ if $\left|p^{-1}(\omega)\right|=N$ for all but finitely many ω.

- This means that if $p: X \rightarrow Y$ is both a covering map and a rational map, where $X=E(\mathbb{C}) \backslash A$ (where A is finite), its degree as a rational map and as a cover coincide.

Bely̆ Maps

Definition. Given a rational function $f(x, y)$ with degree N, we say that ω is a critical value if $\left|f^{-1}(\omega)\right|<N$.

Bely̆ Maps

Definition. Given a rational function $f(x, y)$ with degree N, we say that ω is a critical value if $\left|f^{-1}(\omega)\right|<N$.

Definition. A rational function $\beta: E(\mathbb{C}) \rightarrow \mathbb{P}^{1}(\mathbb{C})$ is called a Belyı̆ map if there are no critical values other than 0,1 , and ∞.

Bely̆̌ Maps

Definition. Given a rational function $f(x, y)$ with degree N, we say that ω is a critical value if $\left|f^{-1}(\omega)\right|<N$.

Definition. A rational function $\beta: E(\mathbb{C}) \rightarrow \mathbb{P}^{1}(\mathbb{C})$ is called a Belyı̆ map if there are no critical values other than 0,1 , and ∞.

Theorem. Given an elliptic curve E defined over the algebraic numbers, there exists a Belyı̆ map $\beta: E(\mathbb{C}) \rightarrow \mathbb{P}^{1}(\mathbb{C})$.

- β acts as a cover on $\mathbb{P}^{1}(\mathbb{C}) \backslash\{0,1, \infty\}$
- A Belyı̆ map associated with its particular elliptic curve is called a Belyı̆ pair.

Example of a Belyı̆ Pair

An example of a Belyǐ pair is

$$
y^{2}=x^{3}+1, \quad \beta(x, y)=-x^{3} .
$$

Example of a Belyı̆ Pair

An example of a Belyı̌ pair is

$$
y^{2}=x^{3}+1, \quad \beta(x, y)=-x^{3}
$$

- $\beta^{-1}(-1)=\left\{\left(\zeta_{3}, \pm \sqrt{2}\right),\left(\zeta_{3}^{2}, \pm \sqrt{2}\right),(1, \pm \sqrt{2})\right\}$.
- β has degree 6 .

Example of a Belyı̆ Pair

An example of a Belyı̌ pair is

$$
y^{2}=x^{3}+1, \quad \beta(x, y)=-x^{3}
$$

- $\beta^{-1}(-1)=\left\{\left(\zeta_{3}, \pm \sqrt{2}\right),\left(\zeta_{3}^{2}, \pm \sqrt{2}\right),(1, \pm \sqrt{2})\right\}$.
- β has degree 6 .
- $\beta^{-1}(0)=\{(0,1),(0,-1)\}$.

Example of a Belyı̆ Pair

An example of a Belyı̌ pair is

$$
y^{2}=x^{3}+1, \quad \beta(x, y)=-x^{3}
$$

- $\beta^{-1}(-1)=\left\{\left(\zeta_{3}, \pm \sqrt{2}\right),\left(\zeta_{3}^{2}, \pm \sqrt{2}\right),(1, \pm \sqrt{2})\right\}$.
- β has degree 6 .
- $\beta^{-1}(0)=\{(0,1),(0,-1)\}$.
- $\beta^{-1}(1)=\left\{\left(-\zeta_{3}, 0\right),\left(-\zeta_{3}^{2}, 0\right),(-1,0)\right\}$ where $\zeta_{3} \neq 1$ is a $3 r d$ root of unity.

Dessins d'Enfants

- A Dessin d'Enfant is a connected bipartite graph 「 embedded in an oriented compact surface X, such that $X \backslash \Gamma$ is a disjoint union of 2-dimensional cells. Those cells are called faces. We adopt the convention of representing the bipartite structure by black and white colorings.

- Dessins can also be seen as arising from Belyı̆ maps

Dessins From Bely̌̌ Maps

Belyĭ maps give rise to Dessins d'Enfants

- Let $\beta^{-1}(0)=$ Black Vertices
- Let $\beta^{-1}(1)=$ White Vertices
- Let $\beta^{-1}([0,1])=$ Edges
- Let $\beta^{-1}(\infty)=$ Midpoints of Faces

Example 1

- $\beta: \mathbb{P}^{1}(\mathbb{C}) \rightarrow \mathbb{P}^{1}(\mathbb{C}), \quad \beta(x)=x^{3}$
- $\beta^{-1}(0)=\{0\}, \beta^{-1}(1)=\left\{1, \zeta_{3}, \zeta_{3}^{2}\right\}, \beta^{-1}(\infty)=\{\infty\}$.
- The corresponding Dessin d'Enfant is

Example 2

- $E: y^{2}=x^{3}+1$ and $\beta(x, y)=\frac{y+1}{2}$
- Its Dessin d'Enfant is given by

Degree Sequences of a Dessin

- Let Γ be a dessin. Its degree sequence \mathcal{D} is defined to be the multiset $\{B, W, F\}$, where B, W and F are sets of numbers, defined as follows:
- $\mathrm{B}=\left\{e_{b} \mid \mathrm{b}\right.$ is a black vertex, and e_{b} is the number of edges adjacent to it $\}$
- $\mathrm{W}=\left\{e_{w} \mid \mathrm{w}\right.$ is a white vertex, and e_{w} is the number of edges adjacent to it $\}$
- $\mathrm{F}=\left\{e_{f} \mid \mathrm{f}\right.$ is a face, and e_{f} is the number of white vertices adjacent to it $\}$
- The degree sequence of the Belyĭ map is defined to be the degree sequence of the associated dessin.
- The degree sequence can also be defined purely in terms of the Belyĭ map.

Example

- Consider the Bely̆̌ pair, $E: y^{2}=x^{3}+1$ and $\beta(x, y)=-x^{3}$.
- The corresponding dessin is

- We have that
- $\beta^{-1}(0)=\{(0,1),(0,-1)\}$.
- $\beta^{-1}(1)=\left\{\left(-\zeta_{3}, 0\right),\left(-\zeta_{3}^{2}, 0\right),(-1,0)\right\}$ where $\zeta_{3} \neq 1$ is a 3 rd root of unity.
- Its degree sequence is $\mathcal{D}=\{\{3,3\},\{2,2,2\},\{6\}\}$.

Degree Sequences

- The degree sequence of a Belyĭ map always satisfies

$$
\sum_{b \in B} e_{b}=\sum_{w \in W} e_{w}=\sum_{f \in F} e_{f}=|B|+|W|+|F|=\operatorname{deg}(\beta)
$$

Degree Sequences

- The degree sequence of a Belyı̆ map always satisfies

$$
\sum_{b \in B} e_{b}=\sum_{w \in W} e_{w}=\sum_{f \in F} e_{f}=|B|+|W|+|F|=\operatorname{deg}(\beta)
$$

- Note that $\sum_{b \in B} e_{b}=\sum_{w \in W} e_{w}=\sum_{f \in F} e_{f}=\operatorname{deg}(\beta)$ is a direct consequence of the degree sum formula or the Fundamental Theorem of Algebra.

Degree Sequences

- The degree sequence of a Belyı̆ map always satisfies

$$
\sum_{b \in B} e_{b}=\sum_{w \in W} e_{w}=\sum_{f \in F} e_{f}=|B|+|W|+|F|=\operatorname{deg}(\beta)
$$

- Note that $\sum_{b \in B} e_{b}=\sum_{w \in W} e_{w}=\sum_{f \in F} e_{f}=\operatorname{deg}(\beta)$ is a direct consequence of the degree sum formula or the Fundamental Theorem of Algebra.
- $|B|+|W|+|F|=\operatorname{deg}(\beta)$ follows from the fact that Euler characteristic of torus is 0 :

$$
2 g_{E}-2=\operatorname{deg} \beta\left(2 g_{\mathbb{P}^{1}}-2\right)+\sum_{P \in E(\mathbb{C})}\left(e_{P}-1\right)
$$

Degree Sequences

Question. For any given $N \in \mathbb{N}$, suppose we have sets $\mathcal{D}=\{B, W, F\}$ satisfying

$$
\sum_{b \in B} b=\sum_{w \in W} w=\sum_{f \in F} f=|B|+|W|+|F|=N
$$

When is \mathcal{D} the degree sequence of a Belyĭ pair with Belyı̆ map having degree N ?

Degree Sequences

Answer (Hurwitz, 1891). The precise conditions for when this occurs are given as follows:

1. There exist $\sigma_{0}, \sigma_{1}, \sigma_{\infty} \in S_{N}$ with cycle types B, W, and F respectively for which $\sigma_{0} \circ \sigma_{1} \circ \sigma_{\infty}=1$.
2. The group $G=\left\langle\sigma_{0}, \sigma_{1}, \sigma_{\infty}\right\rangle$ is a transitive subgroup of S_{N}. Thus, for any $N \in \mathbb{N}$, to find Belyı̆ maps of degree N, we use the above theorem to find all possible degree sequences.

Example

Consider the degree sequence $\mathcal{D}=\{\{3\},\{3\},\{3\}\}$. This corresponds to some Belyı̆ pair (E, β) because, by choosing

$$
\begin{aligned}
\sigma_{0} & =(123) \\
\sigma_{1} & =(123) \\
\sigma_{\infty} & =(123)
\end{aligned}
$$

we obtain $\sigma_{0} \circ \sigma_{1} \circ \sigma_{\infty}=1$. Moreover, $G=\left\langle\sigma_{0}, \sigma_{1}, \sigma_{\infty}\right\rangle$ is the cyclic group of order 3 , which is a transitive subgroup of S_{3}.

Motivation for Monodromy Groups

Recall Hurwitz's Theorem:
Theorem (Hurwitz, 1891). Fix $N \in \mathbb{N}$. Given a degree sequence $\mathcal{D}=\{B, W, F\}$ satisfying

$$
\sum_{b \in B} b=\sum_{w \in W} w=\sum_{f \in F} f=|B|+|W|+|F|=N
$$

Then \mathcal{D} is the degree sequence of some dessin on torus if and only if there exist three elements σ_{0}, σ_{1}, and σ_{∞} in S_{N}, such that σ_{0} has cycle type B, σ_{1} has cycle type W, and σ_{∞} has cycle type F, and they generate a transitive subgroup of S_{N}

Infinite Families of Regular Dessins

- A Dessin d'Enfant is regular if the degree for all black (or, respectively, white) vertices are the same, and the degree for all faces are the same.
- The degree sequence of a regular dessin on the torus is always one of the following three types:

$$
\begin{aligned}
& \mathcal{D}_{3,2,6}(n)=\{\{3, \ldots, 3\},\{2, \ldots, 2\},\{6, \ldots, 6\}\} \\
& 3 n\underset{n}{2 n}\} \\
& \mathcal{D}_{4,2,4}(n)=\{\{4, \ldots, 4\},\{2, \ldots, 2\},\{4, \ldots, 4\}\} \\
& \operatorname{D}_{3}\underset{n}{2 n}\} \\
& \mathcal{D}_{3,3,3}(n)=\{\{3, \ldots, 3\},\{3, \ldots, 3\},\{3, \ldots, 3\}\} \\
& n
\end{aligned}
$$

Infinite Families of Regular Dessins

$\mathcal{D}_{2,3,6}(3):$

$\mathcal{D}_{3,3,3}(3):$

$\mathcal{D}_{4,2,4}(3):$

Monodromy Group of a covering space

- Let $p: X \rightarrow Y$ be a covering map of degree d. Fixing a point $y \in Y$, we can define an action of $\pi_{1}(Y, y)$ on the set $p^{-1}(y)$ as follows:

Monodromy Group of a covering space

- Let $p: X \rightarrow Y$ be a covering map of degree d. Fixing a point $y \in Y$, we can define an action of $\pi_{1}(Y, y)$ on the set $p^{-1}(y)$ as follows:
- Let $x_{1}, x_{2}, \ldots x_{d}$ be points above y and $\gamma \in \pi_{1}(Y, y)$ be a loop. By the unique lifting property of covering space, there is a unique path γ_{i} starts at each x_{i} that lifts γ. Let $x_{\sigma(i)}$ be the end point of γ_{i}. It must be a point above y. Then $i \rightarrow \sigma(i)$ is a permutation of the $x_{i}^{\prime} s$. This gives an action of $\pi_{1}(Y, y)$ on the points of the preimage of y.

Monodromy Group of a covering space

- Let $p: X \rightarrow Y$ be a covering map of degree d. Fixing a point $y \in Y$, we can define an action of $\pi_{1}(Y, y)$ on the set $p^{-1}(y)$ as follows:
- Let $x_{1}, x_{2}, \ldots x_{d}$ be points above y and $\gamma \in \pi_{1}(Y, y)$ be a loop. By the unique lifting property of covering space, there is a unique path γ_{i} starts at each x_{i} that lifts γ. Let $x_{\sigma(i)}$ be the end point of γ_{i}. It must be a point above y. Then $i \rightarrow \sigma(i)$ is a permutation of the $x_{i}^{\prime} s$. This gives an action of $\pi_{1}(Y, y)$ on the points of the preimage of y.
- This action is called monodromy action. This action is equivalent to a group homomorphism $\alpha: \pi_{1}(Y, y) \rightarrow S_{d}$. The image of α is called monodromy group.

Monodromy Group of a covering space

- Let $p: X \rightarrow Y$ be a covering map of degree d. Fixing a point $y \in Y$, we can define an action of $\pi_{1}(Y, y)$ on the set $p^{-1}(y)$ as follows:
- Let $x_{1}, x_{2}, \ldots x_{d}$ be points above y and $\gamma \in \pi_{1}(Y, y)$ be a loop. By the unique lifting property of covering space, there is a unique path γ_{i} starts at each x_{i} that lifts γ. Let $x_{\sigma(i)}$ be the end point of γ_{i}. It must be a point above y. Then $i \rightarrow \sigma(i)$ is a permutation of the $x_{i}^{\prime} s$. This gives an action of $\pi_{1}(Y, y)$ on the points of the preimage of y.
- This action is called monodromy action. This action is equivalent to a group homomorphism $\alpha: \pi_{1}(Y, y) \rightarrow S_{d}$. The image of α is called monodromy group.
- $\operatorname{im} \alpha$ is a transitive subgroup of S_{d}

Here, the torus is a acting as a covering space of $\mathbb{P}^{1}(\mathbb{C}) \backslash\{0,1, \infty\}$ under the covering map β, with $\beta\left(x_{1}\right)=\beta\left(x_{2}\right)=\beta\left(x_{3}\right)=y$.

The monodromy group of this covering is $Z_{3} \subset S_{3}$.

Monodromy groups and dessins

- Belyı̆ maps are covering maps of $\mathbb{P}^{1}(\mathbb{C}) \backslash\{0,1, \infty\}$
- The fundamental group $\pi_{1}\left(\mathbb{P}^{1}(\mathbb{C}) \backslash\{0,1, \infty\}\right)$ is generated by σ_{0}, a small loop goes around 0 , and σ_{1}, a small loop that goes around 1 , with no other relations. Let σ_{∞} be the elements satisfies $\sigma_{0} \sigma_{1} \sigma_{\infty}=1$.
- Let $\mathcal{D}=\{B, W, F\}$ be a degree sequence associated with some dessin D on an elliptic curve E.
- Let $\alpha: \pi_{1}\left(\mathbb{P}^{1}(\mathbb{C}) \backslash\{0,1, \infty\}\right) \rightarrow S_{n}$ be the monodromy map, then $\alpha\left(\sigma_{0}\right), \alpha\left(\sigma_{1}\right)$ and $\alpha\left(\sigma_{\infty}\right)$ will have cycle type B, W and F respectively.

Computing Monodromy groups

- $\alpha\left(\sigma_{0}\right)$ is the product of cycles given by listing the edges we meet in a counterclockwise loop around the black vertices
- Likewise, $\alpha\left(\sigma_{1}\right)$ comes from counterclockwise loops around the white vertices
- The degree sequence
$\mathcal{D}=\{\{3,3\},\{2,2,2\},\{6\}\}$
- $\alpha\left(\sigma_{0}\right)=(123)(645)$
$\alpha\left(\sigma_{1}\right)=(25)(14)(36)$
$\alpha\left(\sigma_{\infty}\right)=(162435)$

Theorem
The dessin in our infinite family with degree sequence $\mathcal{D}_{2,3,6}(n)$ has monodromy group $G_{n} \cong\left(Z_{n} \times Z_{n}\right) \rtimes Z_{6}$

Theorem

The dessin in our infinite family with degree sequence $\mathcal{D}_{3,3,3}(n)$ has monodromy group $G_{n} \cong\left(Z_{n} \times Z_{n}\right) \rtimes Z_{3}$

Theorem
The dessin in our infinite family with degree sequence $\mathcal{D}_{4,2,4}(n)$ has monodromy group $G_{n} \cong\left(Z_{n} \times Z_{n}\right) \rtimes Z_{4}$

Proof in $D_{(2,3,6)}(n)$ case:

- For any n, we can algorithmically write down σ_{0}, σ_{1}, and σ_{∞}.

Proof in $D_{(2,3,6)}(n)$ case:

- For any n, we can algorithmically write down σ_{0}, σ_{1}, and σ_{∞}.

- Let c_{i} be the cycle permuting the elements of $\{1, \ldots, 6 n\}$ which are equivalent to $i \bmod 6$. For instance,

$$
c_{2}=(2,8, \ldots, 6 n+2) .
$$

Proof in $D_{(2,3,6)}(n)$ case:

- For any n, we can algorithmically write down σ_{0}, σ_{1}, and σ_{∞}.

- Let c_{i} be the cycle permuting the elements of $\{1, \ldots, 6 n\}$ which are equivalent to $i \bmod 6$. For instance, $c_{2}=(2,8, \ldots, 6 n+2)$.
- $\beta=\sigma_{\infty}=\sigma_{1}^{-1} \sigma_{0}^{-1},|\beta|=6$

Proof in $D_{(2,3,6)}(n)$ case:

- For any n, we can algorithmically write down σ_{0}, σ_{1}, and σ_{∞}.

- Let c_{i} be the cycle permuting the elements of $\{1, \ldots, 6 n\}$ which are equivalent to $i \bmod 6$. For instance, $c_{2}=(2,8, \ldots, 6 n+2)$.
- $\beta=\sigma_{\infty}=\sigma_{1}^{-1} \sigma_{0}^{-1},|\beta|=6$
- $\gamma=\sigma_{1} \sigma_{0} \sigma_{1}^{-1} \sigma_{0}^{-1}=c_{2} c_{3}^{-1} c_{5}^{-1} c_{6},|\gamma|=n$

Proof in $D_{(2,3,6)}(n)$ case:

- For any n, we can algorithmically write down σ_{0}, σ_{1}, and σ_{∞}.

- Let c_{i} be the cycle permuting the elements of $\{1, \ldots, 6 n\}$ which are equivalent to $i \bmod 6$. For instance, $c_{2}=(2,8, \ldots, 6 n+2)$.
- $\beta=\sigma_{\infty}=\sigma_{1}^{-1} \sigma_{0}^{-1},|\beta|=6$
- $\gamma=\sigma_{1} \sigma_{0} \sigma_{1}^{-1} \sigma_{0}^{-1}=c_{2} c_{3}^{-1} c_{5}^{-1} c_{6},|\gamma|=n$
- $\delta=\sigma_{0}^{-1} \sigma_{1}^{-1} \sigma_{0} \sigma_{1}=c_{1} c_{2}^{-1} c_{4}^{-1} c_{5},|\delta|=n$.

Proof in $D_{(2,3,6)}(n)$ case:

- For any n, we can algorithmically write down σ_{0}, σ_{1}, and σ_{∞}.

- Let c_{i} be the cycle permuting the elements of $\{1, \ldots, 6 n\}$ which are equivalent to $i \bmod 6$. For instance, $c_{2}=(2,8, \ldots, 6 n+2)$.
- $\beta=\sigma_{\infty}=\sigma_{1}^{-1} \sigma_{0}^{-1},|\beta|=6$
- $\gamma=\sigma_{1} \sigma_{0} \sigma_{1}^{-1} \sigma_{0}^{-1}=c_{2} c_{3}^{-1} c_{5}^{-1} c_{6},|\gamma|=n$
- $\delta=\sigma_{0}^{-1} \sigma_{1}^{-1} \sigma_{0} \sigma_{1}=c_{1} c_{2}^{-1} c_{4}^{-1} c_{5},|\delta|=n$.
- γ and δ commute, thus $\langle\gamma, \delta\rangle=\langle\gamma\rangle \times\langle\delta\rangle$.

Proof in $D_{(2,3,6)}(n)$ case:

- For any n, we can algorithmically write down σ_{0}, σ_{1}, and σ_{∞}.

- Let c_{i} be the cycle permuting the elements of $\{1, \ldots, 6 n\}$ which are equivalent to $i \bmod 6$. For instance, $c_{2}=(2,8, \ldots, 6 n+2)$.
- $\beta=\sigma_{\infty}=\sigma_{1}^{-1} \sigma_{0}^{-1},|\beta|=6$
- $\gamma=\sigma_{1} \sigma_{0} \sigma_{1}^{-1} \sigma_{0}^{-1}=c_{2} c_{3}^{-1} c_{5}^{-1} c_{6},|\gamma|=n$
- $\delta=\sigma_{0}^{-1} \sigma_{1}^{-1} \sigma_{0} \sigma_{1}=c_{1} c_{2}^{-1} c_{4}^{-1} c_{5},|\delta|=n$.
- γ and δ commute, thus $\langle\gamma, \delta\rangle=\langle\gamma\rangle \times\langle\delta\rangle$.
- $\langle\gamma, \delta\rangle \triangleleft\langle\beta, \gamma, \delta\rangle$

Proof in $D_{(2,3,6)}(n)$ case:

- For any n, we can algorithmically write down σ_{0}, σ_{1}, and σ_{∞}.

- Let c_{i} be the cycle permuting the elements of $\{1, \ldots, 6 n\}$ which are equivalent to $i \bmod 6$. For instance, $c_{2}=(2,8, \ldots, 6 n+2)$.
- $\beta=\sigma_{\infty}=\sigma_{1}^{-1} \sigma_{0}^{-1},|\beta|=6$
- $\gamma=\sigma_{1} \sigma_{0} \sigma_{1}^{-1} \sigma_{0}^{-1}=c_{2} c_{3}^{-1} c_{5}^{-1} c_{6},|\gamma|=n$
- $\delta=\sigma_{0}^{-1} \sigma_{1}^{-1} \sigma_{0} \sigma_{1}=c_{1} c_{2}^{-1} c_{4}^{-1} c_{5},|\delta|=n$.
- γ and δ commute, thus $\langle\gamma, \delta\rangle=\langle\gamma\rangle \times\langle\delta\rangle$.
- $\langle\gamma, \delta\rangle \triangleleft\langle\beta, \gamma, \delta\rangle$
- $\langle\gamma, \delta, \beta\rangle=G_{n}$, since $\sigma_{0}, \sigma_{1} \in\langle\gamma, \delta, \beta\rangle$.

Database of Bely̌̆ Pairs and Monodromy Groups

Having defined all the necessary terminology, the database of Belyı̆ pairs will consist of

- Natural numbers $N \in \mathbb{N}$.
- All Belyı̆ pairs of degree N.
- For each Belyı̆ pair, its corresponding Dessin d'Enfant, degree sequence, and monodromy group.

Why should such a database exist?

Theorem (Zapponi, 2009). Fix $N \in \mathbb{N}$. Then there are finitely many j-invariants such that there exists a Bely̆ pair (E, β) with $\operatorname{deg}(\beta) \leq N$.

Corollary. For a given $N \in \mathbb{N}$, there exists only finitely many Belyı̆ pairs (E, β) with $\operatorname{deg}(\beta)=N$, up to automorphism of the elliptic curve.

Compiling the Database

- We begin with a positive integer N.
- We find all degree sequences for degree N.
- For each degree sequence, we set up a system of polynomial equations to find Belyı̆ pairs which will have the corresponding degree sequence.

Current State of Database

- We have all Bely̆̌ pairs up to degree 4, as well as the majority of degree 5 Bely̆̌ pairs.
- There are no Belyı̆ pairs of degree ≤ 2.
- There is one Belyĭ pair of degree 3 , two of degree 4 , and 5 Belyı̆ pairs of degree 5 .
- We have all degree sequences and their monodromy groups up to degree 8 .

Dessins of With Degree Sequence $\{\{4,1\},\{4,1\},\{5\}\}$.

The dessin to the left has monodromy group S_{5}, the dessin to the right has the holomorph of \mathbb{Z}_{5} as its monodromy group.

What's next?

- Find all degree 6 Belyĭ pairs.
- We expect there to be no fewer than 30 Belyı̆ pairs of degree 6.
- Find an efficient method of obtaining Bely̌̆ pairs.
- Compute monodromy groups from Belyı̆ pairs

Acknowledgments

We would like to thank:

- National Science Foundation
- Purdue University - College of Science
- Dr. Edray Goins
- Mark Pengitore

Questions?

