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Motivation for Project

I Throughout the entire summer, our overall goal was to study
the embeddings of particular graphs on the torus

I We split into two projects:

I Project 1: Find Bely̆ı pairs and create a database of them

I Project 2: Investigate the monodromy groups of Bely̆ı pairs



Spaces
The Riemann Sphere P1(C).
C ∪ {∞}

The Torus



Toroidal Graphs

I Planar graphs are those that can be drawn on the plane
without edge crossings

I Toroidal graphs are those that can be drawn on the torus
without edge crossings.

I It turns out that there do exists non-planar graphs that can be
drawn on the Torus without crossings.



Example

Figure: K3,3

Figure: K3,3 embedded on a torus



Elliptic Curves

I Assuming each ai ∈ C, consider a curve of the form

Y 2 + a1XY + a3Y = X 3 + a2X
2 + a4X + a6.

I A linear change of variables allows us to get this curve in the
form

y2 = x3 + Ax + B.

I This curve is said to be non-singular if

4A3 + 27B2 6= 0.

I A non-singular curve of this form can be shown to have
existing tangent lines at all points.
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Elliptic Curves

Definition. An elliptic curve is a non-singular, cubic curve of the
form

y2 = x3 + Ax + B

with a j-invariant

j(E ) =
6912A3

4A3 + 27B2
.



Elliptic Curves and the Torus

I Theorem: There exists a bijection between the points on an
elliptic curve and the set of points on a torus.

I This is a classic result and can be seen via elliptic logarithms.



Covering Spaces

Definition (covering space)

Let X be a topological space. A
covering space of X consists of a
topological space X̃ and a map
p : X̃ → X such that for each
x ∈ X , there exists an open
neighborhood U of x such that
p−1(U) is the disjoint union of open
sets, each of which is mapped
homeomorphically onto U by p.



Notions of Degree

Definition. The degree d of a covering p : X → Y is the number
of points in X in the preimage of a point in Y , that is,
d = |p−1(y)|. It turns out that this is the same for all points.

Definition. If p(x , y) is a rational function on an elliptic curve, that
is, a quotient of two relatively prime bivariate polynomials,
p(x , y) = r(x ,y)

q(x ,y) , we say deg(p) = N if |p−1(ω)| = N for all but
finitely many ω.

I This means that if p : X → Y is both a covering map and a
rational map, where X = E (C) \ A (where A is finite), its
degree as a rational map and as a cover coincide.
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Bely̆ı Maps

Definition. Given a rational function f (x , y) with degree N, we say
that ω is a critical value if |f −1(ω)| < N.

Definition. A rational function β : E (C)→ P1(C) is called a
Bely̆ı map if there are no critical values other than 0, 1, and ∞.

Theorem. Given an elliptic curve E defined over the algebraic
numbers, there exists a Bely̆ı map β : E (C)→ P1(C).

I β acts as a cover on P1(C) \ {0, 1,∞}
I A Bely̆ı map associated with its particular elliptic curve is

called a Bely̆ı pair.
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Example of a Bely̆ı Pair

An example of a Bely̆ı pair is

y2 = x3 + 1, β(x , y) = −x3.

I β−1(−1) = {(ζ3,±
√

2), (ζ23 ,±
√

2), (1,±
√

2)}.
I β has degree 6.

I β−1(0) = {(0, 1), (0,−1)}.
I β−1(1) = {(−ζ3, 0), (−ζ23 , 0), (−1, 0)} where ζ3 6= 1 is a 3rd

root of unity.
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Dessins d’Enfants

I A Dessin d’Enfant is a connected bipartite graph Γ embedded
in an oriented compact surface X , such that X \ Γ is a disjoint
union of 2-dimensional cells. Those cells are called faces. We
adopt the convention of representing the bipartite structure by
black and white colorings.

I

I Dessins can also be seen as arising from Bely̆ı maps



Dessins From Bely̆ı Maps

Bely̆ı maps give rise to Dessins d’Enfants

I Let β−1(0) = Black Vertices

I Let β−1(1) = White Vertices

I Let β−1([0, 1]) = Edges

I Let β−1(∞) = Midpoints of Faces



Example 1

I β : P1(C)→ P1(C), β(x) = x3

I β−1(0) = {0}, β−1(1) = {1, ζ3, ζ23}, β−1(∞) = {∞}.

I The corresponding Dessin d’Enfant is



Example 2

I E : y2 = x3 + 1 and β(x , y) = y+1
2

I Its Dessin d’Enfant is given by



Degree Sequences of a Dessin

I Let Γ be a dessin. Its degree sequence D is defined to be the
multiset {B,W ,F}, where B, W and F are sets of numbers,
defined as follows:

I B = {eb|b is a black vertex, and eb is the number of edges
adjacent to it}

I W = {ew |w is a white vertex, and ew is the number of edges
adjacent to it}

I F = {ef |f is a face, and ef is the number of white vertices
adjacent to it}

I The degree sequence of the Bely̆ı map is defined to be the
degree sequence of the associated dessin.

I The degree sequence can also be defined purely in terms of
the Bely̆ı map.



Example

I Consider the Bely̆ı pair, E : y2 = x3 + 1 and β(x , y) = −x3.
I The corresponding dessin is

I We have that
I β−1(0) = {(0, 1), (0,−1)}.
I β−1(1) = {(−ζ3, 0), (−ζ23 , 0), (−1, 0)} where ζ3 6= 1 is a 3rd

root of unity.

I Its degree sequence is D = {{3, 3}, {2, 2, 2}, {6}}.



Degree Sequences

I The degree sequence of a Bely̆ı map always satisfies∑
b∈B

eb =
∑
w∈W

ew =
∑
f ∈F

ef = |B|+ |W |+ |F | = deg(β)

I Note that
∑

b∈B eb =
∑

w∈W ew =
∑

f ∈F ef = deg(β) is a
direct consequence of the degree sum formula or the
Fundamental Theorem of Algebra.

I |B|+ |W |+ |F | = deg(β) follows from the fact that Euler
characteristic of torus is 0:

2 gE − 2 = deg β
(
2gP1 − 2

)
+

∑
P∈E(C)

(
eP − 1

)
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Degree Sequences

Question. For any given N ∈ N, suppose we have sets
D =

{
B,W ,F

}
satisfying∑

b∈B
b =

∑
w∈W

w =
∑
f ∈F

f = |B|+ |W |+ |F | = N.

When is D the degree sequence of a Bely̆ı pair with Bely̆ı map
having degree N?



Degree Sequences

Answer (Hurwitz, 1891). The precise conditions for when this
occurs are given as follows:

1. There exist σ0, σ1, σ∞ ∈ SN with cycle types B,W , and F
respectively for which σ0 ◦ σ1 ◦ σ∞ = 1.

2. The group G = 〈σ0, σ1, σ∞〉 is a transitive subgroup of SN .

Thus, for any N ∈ N, to find Bely̆ı maps of degree N, we use the
above theorem to find all possible degree sequences.



Example

Consider the degree sequence D = {{3}, {3}, {3}}. This
corresponds to some Bely̆ı pair (E , β) because, by choosing

σ0 = (123)

σ1 = (123)

σ∞ = (123)

we obtain σ0 ◦ σ1 ◦ σ∞ = 1. Moreover, G = 〈σ0, σ1, σ∞〉 is the
cyclic group of order 3, which is a transitive subgroup of S3.



Motivation for Monodromy Groups

Recall Hurwitz’s Theorem:
Theorem (Hurwitz, 1891). Fix N ∈ N. Given a degree sequence
D = {B,W ,F} satisfying∑

b∈B
b =

∑
w∈W

w =
∑
f ∈F

f = |B|+ |W |+ |F | = N.

Then D is the degree sequence of some dessin on torus if and only
if there exist three elements σ0,σ1, and σ∞ in SN , such that σ0 has
cycle type B, σ1 has cycle type W , and σ∞ has cycle type F , and
they generate a transitive subgroup of SN



Infinite Families of Regular Dessins

I A Dessin d’Enfant is regular if the degree for all black (or,
respectively, white) vertices are the same, and the degree for
all faces are the same.

I The degree sequence of a regular dessin on the torus is always
one of the following three types:

D3,2,6(n) = {{3, . . . , 3}
2n

, {2, . . . , 2}
3n

, {6, . . . , 6}
n

}

D4,2,4(n) = {{4, . . . , 4}
n

, {2, . . . , 2}
2n

, {4, . . . , 4}
n

}

D3,3,3(n) = {{3, . . . , 3}
n

, {3, . . . , 3}
n

, {3, . . . , 3}
n

}



Infinite Families of Regular Dessins

D2,3,6(3):

D3,3,3(3):

D4,2,4(3):



Monodromy Group of a covering space

I Let p : X → Y be a covering map of degree d . Fixing a point
y ∈ Y , we can define an action of π1(Y , y) on the set p−1(y)
as follows:

I Let x1, x2, . . . xd be points above y and γ ∈ π1(Y , y) be a
loop. By the unique lifting property of covering space, there is
a unique path γi starts at each xi that lifts γ. Let xσ(i) be the
end point of γi . It must be a point above y . Then i → σ(i) is
a permutation of the x ′i s. This gives an action of π1(Y , y) on
the points of the preimage of y .

I This action is called monodromy action. This action is
equivalent to a group homomorphism α : π1(Y , y)→ Sd . The
image of α is called monodromy group.

I imα is a transitive subgroup of Sd
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Here, the torus is a acting as a covering space of P1(C) \ {0, 1,∞}
under the covering map β, with β(x1) = β(x2) = β(x3) = y .

The monodromy group of this covering is Z3 ⊂ S3.



Monodromy groups and dessins

I Bely̆ı maps are covering maps of P1(C) \ {0, 1,∞}
I The fundamental group π1(P1(C) \ {0, 1,∞}) is generated by
σ0, a small loop goes around 0, and σ1, a small loop that goes
around 1, with no other relations. Let σ∞ be the elements
satisfies σ0σ1σ∞ = 1.

I Let D = {B,W ,F} be a degree sequence associated with
some dessin D on an elliptic curve E .

I Let α : π1(P1(C) \ {0, 1,∞})→ Sn be the monodromy map,
then α(σ0),α(σ1) and α(σ∞) will have cycle type B,W and F
respectively.



Computing Monodromy groups

I α(σ0) is the product of cycles given
by listing the edges we meet in a
counterclockwise loop around the
black vertices

I Likewise, α(σ1) comes from
counterclockwise loops around the
white vertices

I The degree sequence
D = {{3, 3}, {2, 2, 2}, {6}}

I α(σ0) = (123)(645)
α(σ1) = (25)(14)(36)
α(σ∞) = (162435)



Theorem
The dessin in our infinite family with degree sequence D2,3,6(n) has
monodromy group Gn

∼= (Zn × Zn) o Z6

I D2,3,6(n) = {{3, . . . , 3}
2n

, {2, . . . , 2}
3n

, {6, . . . , 6}
n

}



Theorem
The dessin in our infinite family with degree sequence D3,3,3(n) has
monodromy group Gn
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I D3,3,3(n) = {{3, . . . , 3}
n

, {3, . . . , 3}
n

, {3, . . . , 3}
n

}



Theorem
The dessin in our infinite family with degree sequence D4,2,4(n) has
monodromy group Gn

∼= (Zn × Zn) o Z4

I D4,2,4(n) = {{4, . . . , 4}
n

, {2, . . . , 2}
2n

, {4, . . . , 4}
n

}



Proof in D(2,3,6)(n) case:

I For any n, we can algorithmically write down σ0, σ1, and σ∞.

I

I Let ci be the cycle permuting the elements of {1, . . . , 6n}
which are equivalent to i mod 6. For instance,
c2 = (2, 8, . . . , 6n + 2).

I β = σ∞ = σ−11 σ−10 , |β| = 6

I γ = σ1σ0σ
−1
1 σ−10 = c2c

−1
3 c−15 c6, |γ| = n

I δ = σ−10 σ−11 σ0σ1 = c1c
−1
2 c−14 c5, |δ| = n.

I γ and δ commute, thus 〈γ, δ〉 = 〈γ〉 × 〈δ〉.
I 〈γ, δ〉 / 〈β, γ, δ〉
I 〈γ, δ, β〉 = Gn, since σ0, σ1 ∈ 〈γ, δ, β〉.
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Database of Bely̆ı Pairs and Monodromy Groups

Having defined all the necessary terminology, the database of
Bely̆ı pairs will consist of

I Natural numbers N ∈ N.

I All Bely̆ı pairs of degree N.

I For each Bely̆ı pair, its corresponding Dessin d’Enfant, degree
sequence, and monodromy group.



Why should such a database exist?

Theorem (Zapponi, 2009). Fix N ∈ N. Then there are finitely
many j-invariants such that there exists a Bely̆ı pair (E , β) with
deg(β) ≤ N.

Corollary. For a given N ∈ N, there exists only finitely many
Bely̆ı pairs (E , β) with deg(β) = N, up to automorphism of the
elliptic curve.



Compiling the Database

I We begin with a positive integer N.

I We find all degree sequences for degree N.

I For each degree sequence, we set up a system of polynomial
equations to find Bely̆ı pairs which will have the corresponding
degree sequence.



Current State of Database

I We have all Bely̆ı pairs up to degree 4, as well as the majority
of degree 5 Bely̆ı pairs.

I There are no Bely̆ı pairs of degree ≤ 2.

I There is one Bely̆ı pair of degree 3, two of degree 4, and 5
Bely̆ı pairs of degree 5.

I We have all degree sequences and their monodromy groups up
to degree 8.



Dessins of With Degree Sequence {{4, 1}, {4, 1}, {5}}.

The dessin to the left has monodromy group S5, the dessin to the
right has the holomorph of Z5 as its monodromy group.



What’s next?

I Find all degree 6 Bely̆ı pairs.

I We expect there to be no fewer than 30 Bely̆ı pairs of degree
6.

I Find an efficient method of obtaining Bely̆ı pairs.

I Compute monodromy groups from Bely̆ı pairs
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